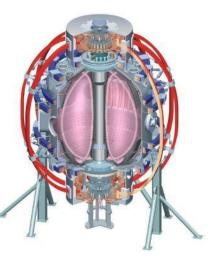


Supported by



Summary of Macroscopic Stability TSG FY11-FY12 Forum XP Prioritization

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Jack Berkery (TSG Deputy Leader), Jong-Kyu Park (TSG Leader), Riccardo Betti (TSG Theory Leader)

> NSTX FY11-FY12 Research Forum B318, PPPL March 15-18, 2011

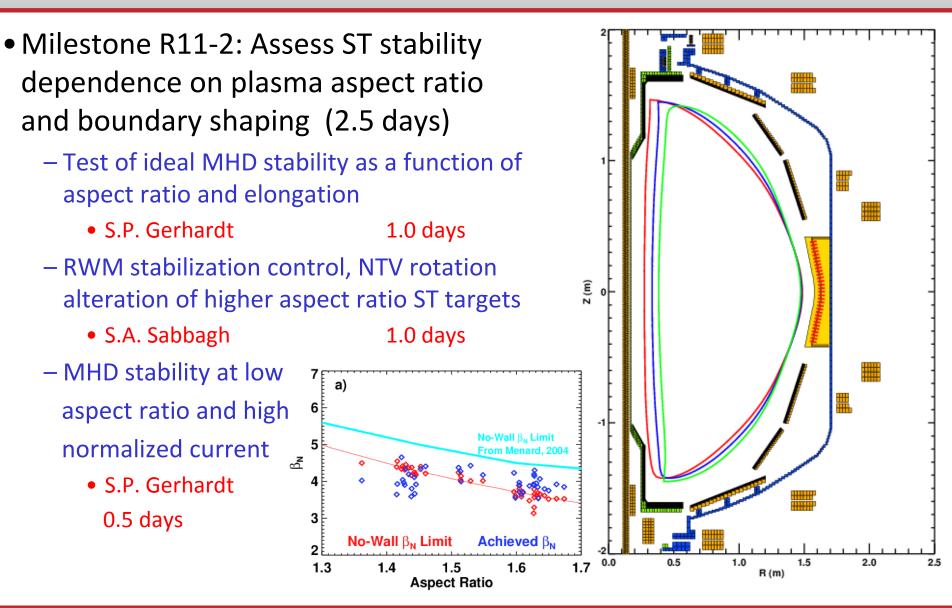
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

Science

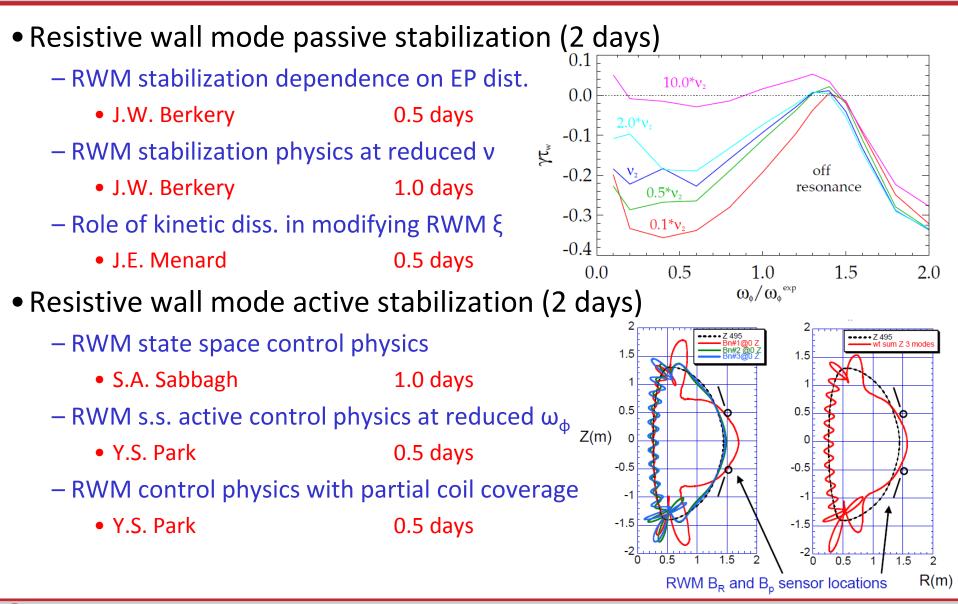
Twenty proposal received covering NSTX milestones and ITPA activities

- Milestones :
 - R(11-2) : Assess ST stability dependence on plasma aspect ratio and boundary shaping
 - R(12-3) : Assess access to reduced density and collisionality in high-performance scenarios (Main responsibility to ASC)
 - IR(12-1) : Investigate magnetic braking physics and develop toroidal rotation control at low collisionality
- ITPA activities :
 - MDC-2, WG-7: Resistive wall mode physics
 - MDC-4, MDC-14, WG-9: EF, Locking and tearing mode physics
 - MDC-12: Magnetic braking physics
 - MDC-15, MDC-17: Disruption physics
- 20 proposals requested 23.5 days
 - FY11 : 7 days = 5.5 days (1st) + 1.5 days (2nd)
 - FY12 : 4.5 days = 3.5 days (1st) + 1.0 days (2nd)

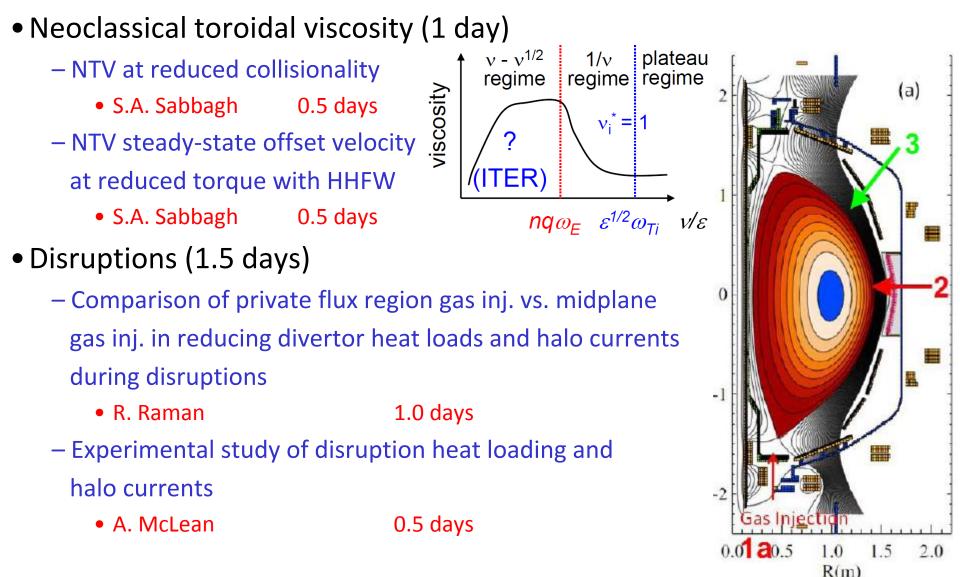

2

Macroscopic Stability TSG XPs: as proposed

Proposal title	Presenter	Days Min.
 Influence of g profile on Tear. Mode Beta Limit and 3D Field Sensitivity 	(R. J. Buttery)	3.0 1.5
Error Field Threshold Study with Reduced Input Torques	(JK. Park)	1.0 0.5
High-n stability test using RFA	(JK. Park)	1.0 0.5
• The later error field correction including plasma response	(JK. Park)	1.0 0.5
 Physics of early error field corr. in reduced-density adv. scenarios 	(J. E. Menard)	1.5 0.5
 Role of kinetic dissipation in modifying RWM eigenfunctions 	(J. E. Menard)	1.5 0.5
 Neoclassical toroidal viscosity at reduced collisionality 	(S. A. Sabbagh)	1.0 0.5
 NTV steady-state offset vel. at red. torque with HHFW (XP1062) 	(S. A. Sabbagh)	1.0 1.0
 RWM stab. control, NTV rot. alteration of higher A targets 	(S. A. Sabbagh)	1.5 1.0
 RWM state space control physics 	(S. A. Sabbagh)	1.0 1.0
 RWM state space active control at reduced plasma rotation 	(Y. S. Park)	1.0 1.0
 RWM control physics with partial control coil coverage 	(Y. S. Park)	1.0 1.0
 RWM Stabilization Physics at Reduced Collisionality 	(J. W. Berkery)	1.0 0.5
 RWM Stabilization Dependence on Energetic Particle Distribution 	(J. W. Berkery)	1.0 0.5
• Comparison of private flux region gas inj. vs midplane gas inj.in reducing	(P. Paman)	20.05
divertor heat loads and halo currents during disruptions in NSTX	(R. Raman)	2.0 0.5 1.0 0.5
 Experimental Study of Disruption Heat Loading and Halo Currents Test of ideal MUD stability as a function of A and elemention 	(S. P. Gerhardt)	
Test of ideal MHD stability as a function of A and elongation	(S. P. Gerhardt)	1.0 0.5
MHD stability at Low-A and high normalized current	(S. P. Gerhardt)	1.0 0.5
 Opt. of early heat. and ramp rate to achieve stable op. at red. den. 	(S. P. Gerhardt)	1.0 0.5
Total 11.5 days		23.5 13.0


3

Several XPs are in direct support of R11-2 milestone



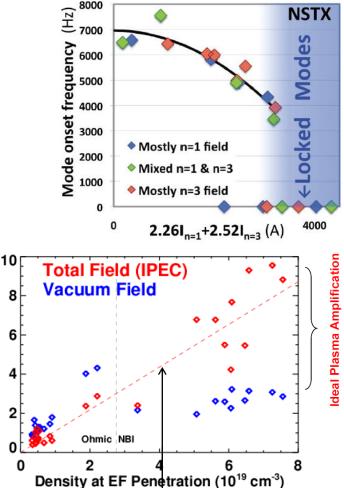
Resistive wall mode research is well represented

Several XPs cover NTV and disruption physics

Error field, tearing mode, RFA XPs were combined into a few joint XPs

• Error fields, tearing modes and resonant field amplification (2.5 days)

Influence of q profile on tearing mode beta limit and 3D field sensitivity + Error field threshold study with reduced input torques


0.5 days

Weighted $\delta B_{2,1}$ (G)

- R. Buttery and J.-K. Park (combined) 1.0 days
- Physics of early EFC in reduced density advanced scenarios + Later EFC including plasma response
 - J.E. Menard and J.-K. Park (combined) 1.0 days
- High n stability test using RFA
 - J.-K. Park

Other

- Optimization of early heating and ramp rate to achieve stable operation at reduced density
 - S.P. Gerhardt (1.0 days) -> Cross cutting
- XMP for upgrades to the β_N controller
 - S.P. Gerhardt (0.3 days)

MS TSG achieved run time for each proposal within the correct total priority 1 + 2 guidance

	with 1 -	_			FY-11	FY-11	FY-12	FY-12
	Title	Proposer	Request	Minimum	1st	2nd	1st	2nd
1	Test of ideal MHD stability as a function of A and elongation	Gerhardt	1	0.5	1	0	0	0
2	MHD stability at Low-A and high normalized current	Gerhardt	1	0.5	0	0	0	0.5
3	Opt. of early heat. and ramp rate to achieve stable op. at red. den.	Gerhardt	1	0.5	0	0	0	0
	Role of kinetic dissipation in modifying RWM eigenfunctions	Menard	1.5	0.5	0	0	0.5	0
5	RWM stab. control, NTV rot. alteration of higher A targets	Sabbagh	1.5	1	1	0	0	0
6	RWM state space control physics	Sabbagh	1	1	1	0	0	0
7	RWM state space active control at reduced plasma rotation	YSpark	1	1	0.5	0	0	0
8	RWM control physics with partial control coil coverage	YSpark	1	1	0	0	0.5	0
9	RWM Stabilization Physics at Reduced Collisionality	Berkery	1	0.5	0	0	1	0
10	RWM Stabilization Dependence on Energetic Particle Distribution	Berkery	1	0.5	0	0	0.5	0
11	Neoclassical toroidal viscosity at reduced collisionality	Sabbagh	1	0.5	0	0	0.5	0
12	NTV steady-state offset vel. at red. torque with HHFW (XP1062)	Sabbagh	1	1	0	0	0.5	0
13	Comparison of different gas inj. in reducing divertor heat loads	Raman	2	0.5	0	0	0.5	0.5
14	Experimental Study of Disruption Heat Loading and Halo Currents	Maclean	1	0.5	0	0	0	0.5
15	Disruptions, eddy currents, tile damage, Hiro currents, LLD	Zakharov	0	0	0	0	0	0
16	Influence of q profile on TM Beta Limit and 3D Field Sensitivity	Buttery	3	1.5	1	0	0	0
17	Physics of early EFC in reduced-density adv. scenarios	Menard	1.5	0.5	0.5	0	0	0
18	Later EFC including plasma response	JKPark	1	0.5	0.5	0	0	0
19	Error Field Threshold Study with Reduced Input Torques	JKPark	1	0.5	0	0	0	0
20	High-n stability test using RFA	JKPark	1	0.5	0	0.5	0	0
		TOTALS:	23.5	13	5.5	0.5	4	1.5

	Guidance	Achieved	
FY11 (1 st)	5.5	5.5	
FY11 (2 nd)	1.5	0.5	1
FY12 (1 st)	3.5	4.0	/ (
FY12 (2 nd)	1.0	1.5	

• Macroscopic Stability TSG backloaded 1 day from FY11 to FY12

5.5

Guidance:

- -0.5 days FY11 (2nd) to FY12 (2nd)
- 0.5 days FY11 (2nd) to FY12 (1st)

8

1.5

3.5

Extra Slides

MS TSG Agenda (1:30~5:30pm, Wednesday, B318)

Approx. tim	e Proposal title	Presenter	Requested days
1:30	Influence of q profile on Tear. Mode Beta Limit and 3D Field Sensitivity	(R. J. Buttery)	3.0(1.5)
1:40	Error Field Threshold Study with Reduced Input Torques	(JK. Park)	1.0(0.5)
	High-n stability test using RFA	(JK. Park)	1.0(0.5)
	The later error field correction including plasma response	(JK. Park)	0.5 + 1.0(0.5)
	Physics of early error field corr. in reduced-density adv. scenarios	(J. E. Menard)	1.5(0.5)
2:00	Neoclassical toroidal viscosity at reduced collisionality	(S. A. Sabbagh)	1.0(0.5)
	NTV steady-state offset vel. at red. torque with HHFW (XP1062)	(S. A. Sabbagh)	1.0(1.0)
	RWM stab. control, NTV rot. alteration of higher A targets	(S. A. Sabbagh)	1.5(1.0)
	RWM state space control physics	(S. A. Sabbagh)	1.0(1.0)
2:20	RWM state space active control at reduced plasma rotation	(Y. S. Park)	1.0(1.0)
	RWM control physics with partial control coil coverage	(Y. S. Park)	1.0(1.0)
2:35	RWM Stabilization Physics at Reduced Collisionality	(J. W. Berkery)	1.0(0.5)
	RWM Stabilization Dependence on Energetic Particle Distribution	(J. W. Berkery)	1.0(0.5)
2:50	Role of kinetic dissipation in modifying RWM eigenfunctions	(J. E. Menard)	1.5(0.5)
3:00	Disruptions, eddy currents, tile damage, Hiro currents, grounding of LLD	(L. E. Zakharov)	0.0(0.0)
3:10	Comparison of private flux region gas inj. vs midplane gas inj. in reducing		
	divertor heat loads and halo currents during disruptions in NSTX	(R. Raman)	2.0(0.5)
3:20	Experimental Study of Disruption Heat Loading and Halo Currents	(A. Maclean)	1.0(0.5)
	XMP for upgrades to the betaN controller	(S. P. Gerhardt)	0.3 + 0.0(0.0)
	Test of ideal MHD stability as a function of A and elongation	(S. P. Gerhardt)	1.0(0.5)
	MHD stability at Low-A and high normalized current	(S. P. Gerhardt)	1.0(0.5)
	Opt. of early heat. and ramp rate to achieve stable op. at red. den.	(S. P. Gerhardt)	1.0(0.5)
3:45	Break		
4:00	Breakout session for prioritization		

(() NSTX

10